Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Hum Vaccin Immunother ; 19(1): 2184754, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2288979

ABSTRACT

Patients with type 2 diabetes (T2D) are at an increased risk of morbidity and mortality of coronavirus disease 2019 (COVID-19). Data on the antibody response to COVID-19 vaccines in T2D patients are less studied. This study aimed to evaluate IgG antibody response to inactivated COVID-19 vaccines in hospitalized T2D patients. Hospitalized patients with no history of COVID-19 and received two doses of inactivated COVID-19 vaccines (Sinopharm or CoronaVac) were included in this study from March to October 2021. SARS-CoV-2 specific IgG antibodies were measured 14-60 days after the second vaccine dose. A total of 209 participants, 96 with T2D and 113 non-diabetes patients, were included. The positive rate and median titer of IgG antibody against receptor-binding domain (anti-RBD) of spike (S) protein of SARS-CoV-2 in T2D group were lower than in control group (67.7% vs 83.2%, p = .009; 12.93 vs 17.42 AU/ml, p = .014) respectively. Similarly, seropositivity and median titers of IgG antibody against the nucleocapsid (N) and S proteins of SARS-CoV-2 (anti-N/S) in T2D group were lower than in control group (68.8% vs 83.2%, p = .032; 18.81 vs 29.57 AU/mL, p = .012) respectively. After adjustment for age, sex, BMI, vaccine type, days after the second vaccine dose, hypertension, kidney disease, and heart disease, T2D was identified as an independent risk factor for negative anti-RBD and anti-N/S seropositivity, odd ratio 0.42 (95% confidence interval 0.19, 0.89) and 0.42 (95% CI 0.20, 0.91), respectively. T2D is associated with impaired antibody response to inactivated COVID-19 vaccine.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Antibody Formation , SARS-CoV-2 , Immunoglobulin G , Antibodies, Viral , Vaccines, Inactivated
2.
Int J Mol Sci ; 22(6)2021 Mar 11.
Article in English | MEDLINE | ID: covidwho-1143517

ABSTRACT

The interactions at the atomic level between small molecules and the main components of cellular plasma membranes are crucial for elucidating the mechanisms allowing for the entrance of such small species inside the cell. We have performed molecular dynamics and metadynamics simulations of tryptophan, serotonin, and melatonin at the interface of zwitterionic phospholipid bilayers. In this work, we will review recent computer simulation developments and report microscopic properties, such as the area per lipid and thickness of the membranes, atomic radial distribution functions, angular orientations, and free energy landscapes of small molecule binding to the membrane. Cholesterol affects the behaviour of the small molecules, which are mainly buried in the interfacial regions. We have observed a competition between the binding of small molecules to phospholipids and cholesterol through lipidic hydrogen-bonds. Free energy barriers that are associated to translational and orientational changes of melatonin have been found to be between 10-20 kJ/mol for distances of 1 nm between melatonin and the center of the membrane. Corresponding barriers for tryptophan and serotonin that are obtained from reversible work methods are of the order of 10 kJ/mol and reveal strong hydrogen bonding between such species and specific phospholipid sites. The diffusion of tryptophan and melatonin is of the order of 10-7 cm2/s for the cholesterol-free and cholesterol-rich setups.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Cholesterol/chemistry , Dimyristoylphosphatidylcholine/chemistry , Melatonin/chemistry , Serotonin/chemistry , Tryptophan/chemistry , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Cholesterol/metabolism , Dimyristoylphosphatidylcholine/metabolism , Hydrogen Bonding , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Melatonin/metabolism , Molecular Dynamics Simulation , Serotonin/metabolism , Solutions , Static Electricity , Thermodynamics , Tryptophan/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL